

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Quantifying flow–ecology relationships across flow regime class and ecoregions in South Carolina

Luke M. Bower^{a,*}, Brandon K. Peoples^b, Michele C. Eddy^c, Mark C. Scott^d

Check for

Flow

- Quantify relationships between key flow metrics and biotic response to better inform water flow standards throughout the state of South Carolina
- Provide a tool

Frame Work

The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010

Build a hydrologic foundation of streamflow and biological data

- 2. Classify natural river types
- 3. Determine flow-ecology relationships associated within each river type
- 4. Recommend water flow standards to achieve river condition goals

Biological Data:

- 492 Fish sites (streams & rivers)
 - DNR
 - 8 biological response metrics

- 530 aquatic insects sites
 - DHEC
 - 6 biological response metrics

Fish Metrics

- Richness: number of species
- Shannon's diversity index: weights richness by abundance
- Proportional representation of sunfish
- Proportional representation of tolerant individuals
- Proportional representation of flow specialists
- Proportional representation of individuals belonging to a breeding strategy
 - Open substrate spawning, brood hiding, and nest spawning species

Slideshare.com

Aquatic insects

- Richness
- Shannon's diversity index
- Proportional representation of individuals within the Orders EPT
- Proportional representation of individuals within the family Chironomidae
- The Megaloptera-Odonata index
- **Tolerance** index

Rivers are a hierarchy of habitats

SC streamflow gauges

1. Build a hydrologic foundation of streamflow data

- rainfall-runoff model 30 year period
- Flow regime: Timing, magnitude, frequency, rate of change, and duration

 Table 2. Model Geospatial Inputs

Data Set	Name	Resolution	Reference
Hydrology	Enhanced National Hydrography Dataset Version 2	2.1 km ² within study area	Moore and Dewald, 2016
Land Cover	2016 National Land Cover Dataset	30-m grid	Jin et al., 2019
Climate	PRISM 4km Daily Temperature and Precipitation 1988–2018	4-km grid	PRISM Climate Group, 2019
Soils	Soil Survey Geographic Database (SSURGO)	1:12,000 to 1:63,360	USDA-NRCS, 2014
Subsurface Parameters	National Weather Service (NWS) for applications of the Sacramento Soil Moisture Accounting Model (SAC-SMA)	Approximatel y 4.7-km grid	Zhang et al., 2011

ERNATIONAL

- Accounts for withdrawals, discharges, and reservoirs within the river network
- Calibration against 59 USGS gages
 - 12 year calibration
 - 8 year validation

Code	Flow regime	Description		
MA1	Magnitude	Mean daily flow (cfs)		
MA3	Magnitude	Mean of the coefficient of variation for each year		
MA41	Magnitude	Annual runoff		
MA42	Magnitude	Variability of MA41	M = Magnitude D = Duration	
ML17	Magnitude	Base flow index		
ML18	Magnitude	Variability in ML17		
ML22	Magnitude	Specific mean annual minimum flow		
MH14	Magnitude	Median of annual maximum flows (dimensionless)	F = Frequency T = Timing	
MH20	Magnitude	Specific mean annual maximum flow (cfs/mile)		
FL1	Frequency	Low flow pulse count		
FL2	Frequency	Variability in FL1	R = Rate	
FH1	Frequency	High flood pulse count		
FH2	Frequency	Variability in FH2		
DL16	Duration	Low flow pulse duration (Days)		
DL17	Duration	Variability in DL16	L = Low flow	
DL18	Duration	Number of zero-flow days		
DH15	Duration	High flow pulse duration (Days)	H= High flow	
DH16	Duration	Variability in DH15		
TA1	Timing	Constancy		
TL1	Timing	Julian date of annual minimum		
TL2	Timing	Variability in TL1		
TH1	Timing	Julian date of annual maximum starting at day 100		
TH2	Timing	Variability in TH1		
RA8	Rate	Number of reversals		

DOI: 10.1002/eco.2387

RESEARCH ARTICLE

WILEY

Predictability of flow metrics calculated using a distributed hydrologic model across ecoregions and stream classes: Implications for developing flow–ecology relationships

Michele C. Eddy¹ | Benjamin Lord¹ | Danielle Perrot¹ | Luke M. Bower² | Brandon K. Peoples³

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow and biological data

Classify natural river types

- 3. Determine flow-ecology relationships associated within each river type
- 4. Recommend water flow standards to achieve river condition goals

2. Classify natural river types

- A. Flow-ecology relationships may differ among stream classes
- B. Relationship holds for these un-sampled streams

Existing classification framework

2 to 3 classes per ecoregion, e.g.:

SE plains: -Perennial runoff -Stable baseflow

Stream classes

- Perennial runoff streams, characterized by moderately stabile flow and distinct seasonal extremes (Class 1, 615 stream segments)
- Stable baseflow streams: characterized by high precipitation, sustained high baseflows, and moderately high run-off (Class 3, 183 stream segments)
- Perennial flashy; characterized by moderately stabile flow with high flow variability (coefficient of variation in daily flows) (Class 4, 138 stream segments)
- Intermittent streams, classified by intermittent periods of no flow punctuated by flooding events (Class 5, 45 stream segments)

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow and biological data
 - 2. Classify natural river types

Determine flow-ecology relationships associated within each river type

4. Recommend water flow standards to achieve river condition goals

Identify relationships: remove uninformative relationships

Three major findings

1. We found many relationships

Three major findings

1. We found many relationships

- 2. All components of the flow regime are important
 - Timing, magnitude, frequency, rate of change, and duration
 - Not just minimum flows!

Relevance of flow regime components

- Magnitude: MA1 (mean daily flow) and ML17 (base flow)
 - Alteration of habitat
 - Reduced water quality and higher mortality
- Duration: DL16 (duration of low flow)
 - Alteration of connectivity
 - Increased duration of low water quality
 - (timing of low flow events)
 - o habitats

Disruption of life-cycle cues (spawning, egg hatching, migration) and decreases in recruitment

Invasion of the second seco

Three major findings

1. We found many relationships

- 2. All components of the flow regime are important
- 3. These relationships differ between stream classes
 - A single flow standard for the whole state will be inadequate

Stream class matters!!!

Mid Atlantic: perennial runoff
 Piedmont: perennial runoff
 Piedmont: perennial flashy
 SE Plains: perennial runoff
 SE Plains: stable baseflow

Frame Work

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
 - 1. Build a hydrologic foundation of streamflow data
 - 2. Classify natural river types
 - 3. Determine flow-ecology relationships associated within each river type

Recommend water flow standards to achieve river condition goals

How can we use these relationships?

- Hydrologic model
 - SWAM: future flow, full allocation
 - Provide estimates of biological response
- Defining biological response limits
 - zones low, medium, and high change in the biological condition of streams along flow gradients
 - Searching for areas along flow gradients that induce changes in the biological metric
- Predicting responses
 - If we alter flow by X amount what will be the biological response?

Pee Dee Basin

- 2. We found many relationship Prioritize metrics by working group ID relevant stream classes 3. All components of the flow regime are important Strongest relationships and Flow regime components Biological and SWAM relevance
- 1. These relationships differ between stream classes

Mean daily flow (MA1): biological response limits

How can we use these relationships?

Defining biological response limits

- zones low, medium, and high change in the biological condition of streams along flow gradients
- Searching for points along flow gradients that induce changes in the biological metric

Predicting responses

If we alter flow by X amount what will be the biological response?

Mean daily flow (MA1): predictions

Mean Daily Flow

Summary

- Developed a flexible framework
 - Accounts for spatial variation
 - Impact on fishes and aquatic insects
 - Counts for all components of the flow regime (Timing, magnitude, frequency, rate of change, and duration)
 - Can be applied across SC and locally
- Inform the discussion on flow standards
 - Flexibility in use and water modeling approaches

Thank you! Questions?

